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Abstract

We relate the sub-Riemannian geometry on the group of rigid motions of the
plane to ‘bicycling mathematics’. We show that this geometry’s geodesics cor-
respond to bike paths whose front tracks are either non-inflectional Euler elasti-
cae or straight lines, and that its infinite minimizing geodesics (or ‘metric lines”)
correspond to bike paths whose front tracks are either straight lines or ‘Euler’s
solitons’ (also known as syntractrix or convicts’ curves).

Keywords: elasticae, sub-Riemannian geometry, bicycle mathematics

Mathematics Subject Classification numbers: 53C17 (Primary) 53A17, 53A04
(Secondary).

1. Introduction

An oriented line segment of fixed length ¢ moves in the Euclidean plane. We think of the
segment as a bicycle so that its end points mark the points of contact of the front and back
wheels with the ground. As the segment moves, its end points trace a pair of curves, the front
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Figure 1. The front and back tracks of a bicycle path (the dark and light curves,
respectively).
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Figure 2. The family of elastic curves.

and back tracks. We impose the ‘no-skid’ condition on the motion: the line segment must be
tangent to the back track at each instant. Any such motion of a line segment will be called a
bicycle path. See figure 1. We define the length of a bicycle path to be the ordinary Euclidean
length of its front track.

What are the minimizing bike paths? These are bike paths whose length minimizes the length
among all competing bike paths which connect two given placements of the line segment.

We will say that two curves in the plane have the same shape if one curve can be taken onto
the other by a homothety, that is, a composition of an isometry and a dilation. The width of
a plane curve is the infimum of the distances between two parallel lines which bound a strip
containing that curve.

Theorem 1.1.  The front track of a minimizing bicycle path is a straight line or an arc of a
non-inflectional elastic curve of width twice the bicycle length or less. Every possible shape of
non-inflectional elastic curve arises in this way.

See figure 2 for some examples of elastic curves, also known as elasticae, a remarkable
family of plane curves studied by Jacques Bernoulli (1691), Euler (1744) and many others.
(We recommend [22] for a nice historical review.) Elasticae can be parameterized by elliptic
functions. They are the planar curves having critical total curvature squared, among all curves
with fixed length connecting two given points. They are defined by the differential equation (1)
below. Another characterization of elasticae is as curves whose curvature varies linearly with
the (signed) distance to some fixed line, the directrix of the elastica. (Can you see this line for
each of the curves in figure 2?) Theorem 1.1 provides yet another characterization of elasticae,
apparently new. In figure 2 the Euler soliton and all the curves to its right are ‘non-inflectional’:
they have no points with null curvature. All the elasticae to the left of the Euler soliton are
inflectional. See section 3.1 below for more information on elasticae.
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Figure 3. A non-minimizing geodesic segment.

In section 4 we derive relationships between the shapes and widths of the elasticae of
theorem 1.1. In general, a bike path is not determined by its front track. That is, for a given
front track, there is a circle’s worth of corresponding back tracks, each of which determined
by the bicycle frame orientation at some fixed point of the front track. However, for each of
the minimizing bike paths of theorem 1.1, except those whose front track is a line segment, its
front track, combined with the condition that the bike path minimizes, does determine the back
track. For a given shape of a non-inflectional elastica there are two distinct types of minimizing
bike paths: one whose front track has width 2¢ and another of certain lesser width (depending
on the shape). We call them ‘wide’ and ‘narrow’ front paths. (Exception: Euler solitons appear
only in width 2/.) The shapes of the back tracks of these two types are quite different. See
figure 7 and proposition 4.5 for the full details.

Let us emphasize that theorem 1.1 does not state that arbitrary subsegments of a given
non-inflectional elastica occur as front tracks of minimizing bike paths. In fact, typically, the
opposite is true. Consider for example figure 3. It depicts a geodesic bike path connecting two
horizontal placements of the bike. Clearly, this is not a minimizing path; a straightforward
eastward ride will be much shorter. Theorem 1.1 only states that short enough subsegments
of this path are minimizing between their endpoints. We do not address here how short is
‘short enough’. For comprehensive results in that direction see [25—27]. According to our next
theorem, the fact that geodesics eventually fail to minimize, as depicted in figure 3, is typical,
with two exceptions.

Theorem 1.2. An infinitely long bike path is a global minimizer, that is, all of its compact
subsegments minimize length between their end points, if and only if it is one of the following
two types:

(a) Its front track is a straight line and its back track is a tractrix or a straight line, or

(b) Its front track is an Euler soliton of width twice the bike length and its back track is a
tractrix.

See figure 4. Furthermore, there is an isometric involution of the bicycle configuration space
which takes paths of one type to paths of the other, provided the back track of the path is a
tractrix and not a line. See lemma 3.2.

In the soliton case, at the ‘highest point’ of the soliton curve, that is, at its point of maximum
curvature, the bike frame is oriented perpendicular to the directrix, pointing away from it. For
an explicit parametrization of the soliton and tractrix, see lemma 5.1 below.

About the proofs. With one notable exception, the proofs of the two theorems above,
once set up in the appropriate language, reduce to standard calculations with the geodesic
equations of sub-Riemannian geometry. Such a calculation yields theorem 1.1 and ‘one half” of
theorem 1.2; namely, that all geodesics, except the two types mentioned in theorem 1.2, are not
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Figure 4. Two infinite minimizing bike paths share the tractrix (light curve) as a common
back track; the two front tracks are a straight line (dashed dark horizontal line) and an
‘Euler’s soliton’ (solid dark curve).

globally minimizing (the argument for the last statement is essentially contained in figure 3).
That bike paths whose front track is a straight line are global minimizers follows directly from
the definition of bike path length. What remains to show is that geodesics of theorem 1.1 whose
front tracks are Euler solitons are global minimizers. Here, the notable exception mentioned
above, we found a surprisingly simple proof, inspired by ‘bicycle mathematics’. The so called
‘bicycle transformation’ (or Darboux transformation or Backlund transformation or flip) con-
sists of rotating a bicycle by 180° about its rear end. It is easy to check that this transformation
is an isometric involution on the bicycle configuration space, so takes global minimizers to
global minimizers. Applying it to a (generic) global minimizer whose front track is a line, we
obtain a global minimizer whose front track is an Euler soliton, as depicted in figure 4.

Comparison with previous works. One of us has published a series of works [25-27] on
the geodesics and their minimality (or ‘optimal synthesis’ in the language of control theory)
for this same subRiemannian geometry. These earlier works focused only on the back wheel
projection. The front wheel was not present. What is new in our work is the focus on the front
wheel projection and the realization that the front wheel traces out elasticae. We could have
derived our minimality results by translating the earlier results from the back wheel over to the
front wheel but we have found it simpler and more illuminating to directly study the geodesics
from the front wheel point of view.

Our other new contributions are the subRiemannian involution taking straight line tracks to
Euler solitons (lemma 3.2, theorem 3.3) and the relations sketched in subsection 6.5 between
the geodesics here and those occurring when rolling the hyperbolic plane along the Euclidean
plane as investigated by Jurdjevic [17, 18].

Computer graphics and animations. Most figures in this article were made using the com-
puter programme Mathematica. They are complemented with some ‘bicycle mathematics’
animations, found on the web page https://cimat.mx/gil/bicycling/.

2. Wider context

For a number of surprising theorems around bike paths, and their relations to integrable
systems, see [8].

The bicycling configuration space is diffeomorphic to the three-dimensional Lie group SE,
of rigid motions of the plane (orientation preserving isometries). Its length structure comes
from a left-invariant sub-Riemannian metric on this group. See section 3.2 below for details.
Such a structure is unique up to scale [1, 9], and that scale can be interpreted as the length
of the bicycle frame. This structure, from the perspective of the back wheel track, has been
investigated by many authors [13, 15, 25-27] and used to understand aspects of mammalian
vision. In that latter context the group SE, is typically referred to as the ‘roto-translational
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group’ and the orientation of the bicycle frame is the crucial object, as optical processing in
the brain involves cells whose function is to perceive orientations of line segments.

Gershkovich and Vershik gave a general description and classification of left invariant sub-
Riemannian structures on three-dimensional Lie groups in [29], see also [1]. In all cases the
geodesic equations are those of ‘generalized elastica’.

On any metric space we can speak of ‘globally minimizing geodesics’ or, synonymously,
‘metric lines’: isometric embeddings of the real line into the metric space. See [10]. What are
the metric lines for a given sub-Riemannian structure? Theorem 1.2 answers this question for
the bicycling case.

Hakavuori and Le Donne [19] prove a number of powerful general theorems regarding met-
ric lines in sub-Riemannian geometries by implementing the operation of ‘blowing down’ a
geodesic. Sufficient iterations of blow-down yield a line in a Euclidean space. As a corollary,
they prove that if a sub-Riemannian geometry Q comes, like ours, with a sub-Riemannian sub-
mersion 7 to the Euclidean plane R?, then (1) the projection of any metric line in Q must lie a
bounded distance from a line in the plane, and (2) if that planar line is given by x = 0 and if we
write the projected geodesic as (x(f), y(¢)) then x(¢) cannot be a non-constant periodic function.
Item (2) excludes all the elasticae of theorem 1.2 besides the line and the soliton from being
metric lines.

We know five other rank 2 sub-Riemannian geometries besides our SE, geometry whose
geodesics project to elasticae under a sub-Riemannian submersion onto the Euclidean plane.
(See the third paragraph of section 3.2 for the definition of a ‘sub-Riemannian submersion’.)
Two are Carnot geometries, one being the Engel group, whose growth vector is (2, 3,4) (see
[3, 4]), and the other, sometimes called the Cartan group, being the unique Carnot group
with growth vector (2,3,5) (see [28]). (The growth vector of a Carnot group is its basic
numerical invariant and encapsulates the graded dimensions of its Lie algebra.) Another is
the flat Martinet geometry, see [2]. The remaining two are five-dimensional, arising from
rolling a constant curvature surface along the Euclidean plane, and have state spaces SO3; x R?
and PSL,(R) x R2. See [17, 18] for a derivation of elasticae as their geodesics. In all five
geometries the geodesics projecting to Euclidean lines are metric lines and in the flat Mar-
tinet geometry these exhaust the set of metric lines. In the other four geometries some of the
geodesics which project onto solitons are also metric lines. In the SO3; x R? case all elasti-
cae, and in particular all Euler solitons, arise as projections of geodesics onto R?, but only
some of the solitons, namely those whose kink is ‘small enough’, arise as projections of metric
lines.

Are all these occurrences of elasticae and Euler solitons in sub-Riemannian geometries
related? There is a sub-Riemannian submersion from the Cartan group onto the Engel group,
so that the space of Engel geodesics embed into the space of Cartan geodesics by hori-
zontal lift. Similarly, the space of flat Martinet geodesics embed into the space of Engel
geodesics. The bike configuration space Q = SE, can be constructed as a circle bundle
associated to the hyperbolic rolling space PSL,(R) x R?, viewed as a principal PSL,(R)
bundle, and this fact and its related geometry allows us to embed the bike geodesics into
the hyperbolic rolling geodesics. See the last paragraph of section 6.4 below. We leave
the possibility of uncovering relations between the other pairs of geometries and of some
deeper reason underlying the ubiquity of elasticae in sub-Riemannian geometry to future
researchers.
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3. Concepts building to the proofs

3.1. Elasticae

Animmersed plane curve is an elastica if its curvature x(¢), as a function of arc length 7, satisfies
the 2nd order ODE

1
i<b+§/{3+A/<;:O

for some constant A. See, for example, [30]. This is an equation of Newton’s type, with
potential §x* + JAx%. Consequently, there is a constant ‘energy’ B € R such that

1., 1,4 A,
2(/{) +8/<c +2/£ =B. (1)
We call the latter equation the ‘energy form’ of the elastica equation. If k(7)) = 0 at some
point then the energy equation asserts that B > 0. Consequently, if B < 0 we must have that
x never vanishes along the curve. Since x(#)) = 0 corresponds to an inflection point of the
curve, we call such elasticae ‘non-inflectional’. Elasticae for which B = 0,A < 0 are also non-
inflectional and consist of the Euler solitons. All non-inflectional elasticae, except the Euler
solitons, have periodic curvature.
Equation (1) can be rewritten (by ‘completing the square’) as

2 2
W2t (% +A> — 2B+ A% ?)

Thus the parameters must satisfy 2B + A% > 0. The set of elasticae is invariant under dilations.
To dilate an immersed plane curve c(f) parameterized by arclength 7 by a factor A > 0 we form
¢(t) = Ac(t/ ). The dilated curve ¢(z) is still parameterized by arclength and has curvature
k() = %n(i). It follows by a direct computation that the A-dilate of an elastica satisfying
equation (1) with parameters A, B satisfies a new equation (1), now with rescaled parameters
A =A/),B=B/\. Thus

pi= —2B/A* < 1 (3)

is scale invariant and can be thought of as a ‘shape parameter’. Non-inflectional elasticae cor-
respond to B < 0, that is, 0 < p < 1, in which case A < 0 as well. There are three types of
‘exceptional’ elasticae, lines, circles and solitons. Lines correspond to solutions of equation (1)
withx = B = 0, solitonsto B = 0,A < 0, k # 0,and circlesto . = 1,thatis, B = —A2, & = 0.
See figure 5.

3.2. Configuration space. Metric concepts

We begin by reformulating our theorems in the language of sub-Riemannian and metric
geometry.

Let ¢ > 0 be the bicycle length. Then the configuration space for bike motions can be
expressed as Q = {(b,f) € R? x R?|||f — b|| = ¢} C R? x R?, where |- || is the standard
Euclidean norm on R?. It is easy to see that Q is a smooth manifold diffeomorphic to R? x S'.
The no-skid condition defines a rank 2 distribution D C TQ on Q by saying that a vector
(b.f) e Tn.nQ belongs to D, ) if and only if b is a multiple of f — b. Bike paths are the integral
curves of D.

4666



Nonlinearity 34 (2021) 4661 A Ardentov et al

pu=—2B/A?

Inflectional elasticae

Y
h

u =0 Solitons _Q
QQ Q

0/0/0/0/9)
QI94d
i =1 Circles O

Non-inflectional
elasticae

Figure 5. Elasticae parameter space. The light and dark solid curves parametrize inflec-
tional (B > 0) and non-inflectional (B < 0) elasticae (respectively) of ‘constant shape’,
level curves of the shape parameter ;o = —2B/A” of equation (3). The dashed heavy
curve in the third quadrant corresponds to the elasticae which appear as front tracks of
geodesic bike paths for fixed bike length ¢ = 1 (see proposition 4.3, where this curve
is parametrized by a). Its intersection with the A-axis (marked with a white dot) stands
for the Euler soliton (¢ = 1 in equation (11)). Each non-zero level curve of j in the
third quadrant intersects the dashed curve at two points, corresponding to the two sizes
of non-inflexional elasiticae appearing as front tracks of bicycle geodesics, ‘wide’ and
‘narrow’ (to the left and right of the white dot, respectively).

D is a contact distribution. We prove this in lemma 4.1 below. Alternatively, in section 6.3
we show how to identify Q with the space of (oriented) tangent lines to the plane, also known
as ‘contact elements’ since they represent 1st order contact of curves. In this context D is the
canonical contact distribution on this space of contact elements, one of the first examples of a
contact manifold. See for example appendix 4 of Arnol’d’s famous book [5].

Letmy: Q0 — R2 be the front wheel projection, (b, f) — f. D is transverse to the fibres of 7,
hence one can equip D with an inner product by pulling back the Euclidean metric on R? to Q
by 7, thenrestricting to D. The three-manifold Q, together with the distribution D and the inner
product on it, is an example of a sub-Riemannian manifold. We constructed the inner product
on D in such a way that the front wheel projection is a sub-Riemannian submersion: for each
q € Q the differential d7 (q) maps the two-plane Dy isometrically onto Ty (qR* = R*. This
sub-Riemannian structure is isometric to the standard sub-Riemannian structure on the group
SE, studied in [13, 15, 25-27]. Up to scaling and isometries, it is the unique left-invariant
sub-Riemannian structure on SE; of contact type.

Since Q is connected and D is contact, the Chow—Rashevskii theorem [23] implies that any
two points in Q are connected by a bicycle path. The length of such a path is defined using
the inner product on D, just as in Riemannian geometry. In view of our construction of the
inner product, the length of a bike path equals the length of its front wheel projection to R?, as
asserted in the introduction.

Defining the distance between two points of Q to be the infimum of the lengths of the bike
paths connecting them turns Q into a metric space. A minimizing geodesic in Q is a bike path
~v:1— Q, where I C R is a compact interval, realizing the distance between its end points.
A geodesic is a bike path v : I — Q, where I C R is an interval (possibly non-compact), such
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Figure 6. Lemma 3.2: flipping a bike about its back wheel.

that every f € I is contained in a compact subinterval I’ C I for which ~|, is a minimizing
geodesic. In addition, we require that if #; is an interior point of / then ¢, is also an interior
point of I'. (This last condition excludes arbitrary concatenations of minimizing geodesics
from being geodesics.)

Theorem 1.1 states that the 7 -image of any geodesic is a non-inflectional elastic curve or
a straight line. A metric line in Q is an infinite geodesic all of whose compact subsegments
are minimizing geodesics. Theorem 1.2 states that the 7 ;-image of any metric line is either a
Euclidean line or an Euler soliton. (The ‘width’ of this soliton is twice the length of the bike
frame.)

A sub-Riemannian isometry of Q is a diffeomorphism that preserves D and the inner product
on it.

Remark 3.1. Clearly, a sub-Riemannian isometry is a distance preserving homeomorphism.
The latter can be taken as a weaker ‘metric’ definition of isometry. For a general sub-
Riemannian manifold, the equivalence of the two definitions is an open problem. For an equi-
regular sub-Riemannian structure, such as our case (or any homogeneous sub-Riemannian
manifold), the two notions are equivalent [11, 21].

By construction, the action of the group E; of isometries of the plane R? lifts to an action
on Q by sub-Riemannian isometries. An element g € E; acts on Q sending (b, f) to (gb, gf)
so that our sub-Riemannian submersion 7, intertwines the E,-action on Q with the standard
action of E, on R2. But these are not all the sub-Riemannian isometries of Q. There is one
extra symmetry that plays an important role in our proof of theorem 1.2.

Lemma 3.2. The map ©:Q — Q, (b,f) — (b,2b — ), which ‘flips’ the bike frame about
the back wheel is a sub-Riemannian isometry of Q. See figure 6.

Proof. & is the restriction of a linear map to Q C R* x R?. Thus its derivative is given by the
same formula, (b, f) — (b, 2b — f). It clearly preserves the no-skid condition hence it leaves D
invariant. It remains to show that [|f|| = [|2b — f||. Now decompose orthogonally f = f 4-f,
b= bl\ + b, , where f”, l')”, are the orthogonal projections along b — f. The bicycling no-skid
condition implies b, = 0 and ||b — f|| = const. implies fH = bH’ hence f” =b. Thus 2b — f =
2f) — (f +f.) = fj — f.. Thatis, 2b — fis the reflection of f about b — f. It follows that || 2b —
£ = [, O
For completeness we describe the full group of isometries of Q.

Theorem 3.3. The group Isom(Q) of all sub-Riemannian isometries of Q is an extension
of By by the two-element group 7./27.. This two-element group is generated by the isometric
involution ® which ‘flips the bike frame’, as described in lemma 3.2 above. Thus

Isom(Q) ~ E, x Z/27 ~ SE, x (Z/27 x 7./27).

The identity component of Isom(Q) is SE,, acting freely and transitively on Q and so induces
a sub-Riemannian isometry between Q and a left-invariant sub-Riemannian metric on SE,.
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Figure 7. Two bicycling geodesics with front tracks (dark solid curve) which are non-
inflectional elasticae of the same shape but of different size: ‘wide’ (left) and ‘narrow’
(right). In each of the two figures: the horizontal dashed light line is the directrix, the
light solid curve is the back track, the arrow depicts the bicycle frame, pointing towards
the front wheel, at the moment of going through a point of maximum curvature of the
front track. See proposition 4.7.

We prove this theorem in the appendix. Hladky [16], in his final section, computes that the
Lie algebra of Isom(Q) is that of SE,. The same conclusion can be drawn from the aspheric-
ity of the associated CR structure, as in [9, §7]. But calculating the Lie algebra of Isom(Q)
only describes the identity component of Isom(Q), missing the ‘discrete part’ (or ‘isotropy
representation’) of the isometry group, as we do in the appendix.

4. The proof of theorem 1.1 (and some more)

We prove a more detailed version of theorem 1.1, subdividing the assertions into four claims.
Most of these claims do not hold for the ‘exceptional’ elasticae (line, circle, soliton). We first
describe the non-exceptional situation, then correct for the exceptional elasticae.

Claim 1 (theorem 1.1). The front track of each bicycle geodesic is an non inflectional
elastica (NIE) or a straight line.

Claim 2 (wide and narrow). For a fixed bicycle frame of length ¢, each shape of NIE appears
as a front track in two different sizes, ‘wide’ and ‘narrow’: the wide front tracks are NIE of
width 2¢. A narrow front track can have any width in (0, 2¢), depending on its shape: the more
circular is a narrow front track, the narrower it is. See figure 7.

Exceptions: the circle and the soliton appear as front tracks only with width 2¢.

Claim 3 (unique horizontal lift). Each nonlinear NIE front track, wide or narrow, has a
unique horizontal lift to a bicycle geodesic. This lift is determined by the back track found
by the following rule: at points of maximum curvature of the front track the bicycle frame
is perpendicular to the front track, pointing ‘outside’ the front track (that is, in the direction
opposite to the acceleration vector of the front track). See figure 7 and our web animations [7].

The bicycle frame is also perpendicular to the front track at the points of minimum curvature.
For the wide NIE, the frame at this point also points outside the front track. For the narrow NIE
the frame points inside.

Exception: all horizontal lifts of a Euclidean line are globally minimizing bike paths. Two
of the lifts correspond to riding along the line, either forward or backwards, with the bike frame
aligned with the line. The rest of the lifts correspond to the back wheel tracing a tractrix of
width £ (the light solid curve of figure 4).

Claim 4 (flipping a front track). There is a sub-Riemannian involution ® : Q — Q on the
bicycling configuration space, rotating the bicycle frame by 180° about its rear end. It acts
on the space of bicycle geodesics, as well as their front tracks, preserving the ‘narrow’ and
‘wide’ subclasses. Each NIE has its ‘length’ L: the distance between two successive points
along the curve of maximum (or minimum) curvature, see figure 11. The flip of a wide NIE is
obtained by translating it by L/2 along its directrix. The flip of a narrow NIE is obtained by a
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Figure 8. The flips of bicycle geodesics with ‘wide’ (left) and ‘narrow’ (right) front
tracks of the same shape. In each of the two figures: the dashed dark curve is the ‘flip’
of the solid dark curve and vice versa, the light solid curve is their common back track,
the light dashed horizontal line is their common directrix, the solid arrow indicates the
bicycle frame at a point of maximum curvature of the solid front track and the dashed
arrow indicates the bicycle frame at a point of minimum curvature of the dashed front
track. See proposition 4.11.

‘glide reflection’: translation by L/2 along the directrix followed by a reflection about it. See
figure 8.

Exceptions: the flip of the circle is the circle itself, the flip of the line is the soliton, of width
2/, and vice versa.

4.1. Generalities on geodesics in sub-Riemannian geometry

To prove the above 4 claims we review some general facts from sub-Riemannian geometry.
For more details see chapter 1 of [23].

Let M be a smooth manifold. We can turn a smooth vector field X on M into a fibre-linear
function Px : T*M — R by the rule Px(q, p) = p(X(q)), where @ € M and p € T M. Consider
a general rank r distribution D C TM, equipped with a sub-Riemannian metric on D and an
orthonormal frame X, . . ., X, € I'(D). Form the corresponding fibre-linear functions P; := Py, .
Then the normal geodesics of this sub-Riemannian structure are, by definition, the projections
onto M of the solutions to the standard Hamiltonian equation on 7" M,

. . 1 5
q=0,H, p=—-0,H, where H= EZ:(P,-) . “4)

See theorem 1.14 on page 9 of [23] for the full statement and later, a proof.

Normal geodesics parametrized by arc length correspond to solutions of equation (4) with
energy H = 1/2. Short enough segments of normal geodesics are length minimizers, but the
converse is not true, in general, due to the existence of singular (or abnormal) geodesics.
See [23], particularly chapters 3 and 5. However, a basic result of the theory is: if D is a
contact distribution then all length minimizing D-horizontal curves are normal geodesics. See
the example at the top of page 59 in [23].

4.2. The bicycling geodesic equations

Let O = {(b,f) € R? x R?|||b — f|| = 1} be the bicycling configuration space, equipped with
the coordinates (x, y, ), where f = (x,y),b = f — (cos 6, sin ), with associated global coordi-
nate vector field framing 0,, d,, Jy. (We take, without loss of generality the bike length ¢ = 1.
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The general case reduces to this case by an easy rescaling argument.) The conjugate fibre
coordinates on 7°Q are p, :== Py, py == Pa,, pp = Py,.

Lemma 4.1. The no-skid condition defines on Q a rank 2 distribution D C TQ, the kernel
of the one-form

n:=d0 — cdy + sdx, where ¢ =cos 0, s =sin 0. 5)
It follows that n A dn = —dx A dy A d6 is non-vanishing, hence D is a contact distribution.

Proof Let q(r) = (b(),f(r)) be a curve in Q satisfying the non-skid condition. Let v:= f—
= (c,s) and decompose orthogonally f= fH + f,, where f”,f | are the orthogonal projec-

tions of f on v, v+ , respectively. The condition [|f — b|| = const. and the no-skid condition
b||v are equivalent to f” = b. From f = b + v follows f = b + v, hence f” = b is equivalent to

v="f =f— fH = f — (f, v)v. In coordinates, this is § — ¢y + sk = 0. That is, q € Ker(r). J
Thus minimizing bike paths are arcs of normal geodesics. An orthonormal framing for

D = Ker(n) is

X1 =0, — 50y, X5 =0y + cOp, (6)
with the associated

Py:=Px, = px — spy, Py:=Pyx, = py+ cpy. @)
The Hamiltonian equations associated to H = [(P1)? + (P»)?] /2 are

x:apr:PIZPx—SP(), px:_axH:Oa

y=0,H="P,=p,+cpy, p=-0,H=0, ®)

6= OpH = pyg +cpy — Spx, o = —O0pH = py(cpx + spy).
So p,, p, are constant, as well as H = (¥* + y*)/2. Fixing H = 1/2 thus means that f(7) is
parametrized by arc length. Rotations act on the space of solutions of equation (8) by rotat-
ing (x,y), (p,, p,) and (c, s) simultaneously and shifting 0, leaving p, unchanged. So we can

assume without loss of generality say p, = 0 and a := p, > 0. Equation (8) and H = 1/2 now
become

X=a—spy, Y=cpp, é:p(;—as, Po = acpy, 0> + d*c* = 1. ©)]

Lemma4.2. Let k be the geodesic curvature of the front track f(t) = (x(t), y(¢)) of a solution
to equation (9). Then Kk = p,.

Proof. We calculate: k = &y — yi = 6 + as = py. 0
We can thus rewrite the unit speed geodesic equation (9) as

X=a—SKk, y=ckK, ézﬂ—as, Kk = ack, 92+a202:1. (10)

We are now ready to prove the four claims.
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4.3. Proving the 1st claim (theorem 1.1)

Proposition 4.3. The curvature r of the front track of a bicycle geodesic (solution
to equation (8)), as a function of arc length t, satisfies the ‘energy form’ of the elastica
equation (1),

/2;2+/<;4+A/£2_B
2 8 2
with
a*+1 (a* —1)?
A=— , B=-—"—" 7 11
2 8 an

That is, the front track is a non-inflectional elastica or a straight line.

Proof. The statement is invariant under rigid motions, so we can use instead equation (10).
Then & = ack and 62 = (k — as)®> = 1 — a*c?, which simplifies to 2ask = x* + a®> — 1. Thus
4% 4 (k% 4 a* — 1)* = 4aK?, which gives the stated formula. O

Remark 4.4. In the last paragraph of section 6.4 below we sketch an alternative proof of
claim 1. This alternative proof uses a relation between hyperbolic rolling geodesics and bicy-
cling geodesics and the fact that the hyperbolic rolling geodesics had been already computed
and shown to correspond to elasticae [17, 18].

4.4. Proving the 2nd claim

The ‘shape parameter’ of the front track is = —2B/A? = (a* — 1)*/(a* + 1)* € [0, 1]. Each
w € (0, 1) has two preimages, a and 1/a, one in (0, 1) the other in (1, co). It follows that each
NIE shape appears as a front track for two values of a. Let us determine the widths of these
front tracks. Let Kpax, Kmin > 0 be the maximum and minimum value of « along the front track.

Proposition 4.5. The front track of a solution to equation (10) with k > 0 has kmax = 1 + @
and Kmin = |1 — a|. It follows that the width of the front track is

e 2if0 <a<1(a‘wide’ front track);

e 2/aifa > 1 (a ‘narrow’front track).

See figure 7.

Proof. Since £ = 0 at Kpax, Amin, these critical values must satisfy (x? + a® — 1)? = 4a’k?
(see proposition 4.3 and its proof). The solutions of this equation are x = +1 £ a. For
0 < a < 1 the positive solutions are 1 4 a, hence Ak = Kpux — Kmin = 2a. Fora > 1, the pos-
itive solutions are a + 1, hence Ax = 2. From £ = ay it follows that Ay = 2 in the 1st case
and 2/a in the 2nd case, as needed. O

Remark 4.6. One can also use equation (10) to find the widths of the respective back tracks:
1—V1-— az) /a for a ‘wide’ front track, and 2/a for a ‘narrow’ front track (same as the
width of the front track).
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4.5. Proving the 3rd claim

Proposition 4.7. Consider a solution of equation (10) with a > 0 and k > O (this can
always be arranged for a nonlinear front track by appropriate reflections about the x and
y axes). Then

(a) 0 = /2 at a point where Kmax occurs.
(b) 0 = —7/2 at a point where kmin occurs and 0 < a < 1 (a ‘wide’ front track).
(¢) 0 = /2 at a point where Ky, occurs and a > 1 (a ‘narrow’ front track).

See figure 7.

Remark 4.8. The a = 1 case is either a soliton, where x does not have a minimum, or a
straight line. The a = 0 case is that of the unit circle and is safely left to the reader.

Proof. By equation (10), & = ack = ay. Thus in all three cases, £ = 0 implies ¢ =y =
0, which implies s = =1 and x = 1. We shall also use the formulae kn,x = 1 +a and
Kmin = |1 — a| from proposition 4.5, and x = a — sk of equation (10).

(a) Substitute k =1+ain x =a — sk and get x +s = a(l — ). If s = —1 then ¥ = 2a +
1 > 1, which is impossible, hence s = 1,x = —1 and § = /2.

(b) If 0 < a < 1 then Ky, = 1 — a. Substitute this in X = a — s« and get X + 5 = a(l + s).
If s =1 then x =2a — 1. Together with 0 < a < 1 this implies —1 < x < 1 which
contradicts x = +1. Hence s = —1, x = [ and # = —7/2 at a point where i, occurs.

(c) If a > 1 then Ky, = a — 1. Substitute this in x =a — sk and get x —s = a(l — ). If
s = —1 then x = 2a — 1. Together with a > 1 this implies x > 1, which contradicts
X ==+1.Hences =1, x =1 and § = 7/2 at a point where K, occurs.

4.6. Proving the 4th claim

Let v be abicycle geodesic. A vertex of 7y is a point on it where an extremum of the curvature of
the front track occurs (£ = 0). Our involution ® : Q — Q is a sub-Riemannian isometry, hence
® o v is a geodesic as well.

Lemma 4.9. If v is a bicycle geodesic with a # 1 (that is, its front track is not a line or
soliton) then ® maps vertices of y to vertices of ® o 7.

Proof. Let ~(r) = (x(0),y(2),0(2)), f£(t) = (x(2),y() its front track and v(r) =
(cos6(1), sin (1)) the frame direction. By proposition 4.7, the vertices of v are the points
where the frame is perpendicular to the front track, (f,v) = 0.Lety = ® oy. Thenf = f — 2v
and v = —v, hence (f,v) = —(f—2v,v) = —(f,v), since (v,v) = 1 implies (v,v) = 0. It
follows that vertices of « and 4 occur simultaneously. O

The statement of claim 4 is invariant under rigid motions and time reparametrizations, so we
can assume, without loss of generality, that v(¢) = (x(¢), y(¢), 0(¢)) satisfies equation (10) with
a>0,a+# 1,k > 0and fy = f(0) is a point where ry,, occurs. Accor_ding to propositioq 4.7
and its proof we then have 6y = 7/2, vo=(0,1), Ko =1+a, fo=(—1,0) and fy =
0, —ko) = —(0,1 + a). R

Now let f(z) be the front track of ¥ = ® o ~. That is, f(r) = f(r) — 2v(?).

Lemma4.10. (1), = —f, = (1.0), (2) fy = (0.1 — a).
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Figure 9. The proof of claim 4 for ‘wide’ (left) and ‘narrow’ (right) front tracks.

Proof.

(1) From equation (10), 8 = x — as. At ¢ =0, o = 1 +a, 6y = 7/2, hence 0y = 1. Now
v = 6(—s, ¢), hence Vg = (—1,0). Thusfy = f, — 2vy = (—1,0) — 2(—1,0) = (1, 0).

(2) From equation (10), 0 =k — afc = ack — ac(k — as) = acs, hence 50 =0. Thus v =
6(—s,c) — 6%(c,s) implies Vo = (0, —1). It follows that f, = fy — 2y = (0, =1 — a) —
200, —1) = (0,1 + a). O

We can conclude from the last lemma:
Proposition 4.11.  For any bicycle geodesic v witha # 0,1, let ¥ = ® o . Then

e Jf0 < a < 1 (wide front track) then the front track of 7y is the result of translating the front
track of v along its directrix for half its length;

e Ifa > 1 (narrow front track) then the front track of v is the result of translating the front
track of v along its directrix for half its length, then reflecting about the directrix.

See figure 9.

5. The proof of theorem 1.2

We first prove half of theorem 1.2, the ‘if” part, without invoking theorem 1.1. Doing so
illustrates some amusing bicycling mathematics.

By the ‘horizontal lift” of a front track f(#) we mean any bicycle path (b(7), f(r)) whose front
track projection is the given curve f(¢). Since a Euclidean line is a metric line in R?, and since
7 preserves lengths when applied to bicycle paths, every horizontal lift of a Euclidean straight
line is a metric line in Q. However, just because the front wheel moves in a straight line does not
mean that the back wheel moves along the same straight line. Indeed, the back wheel typically
traces a fractrix of width £ associated to the linear front track (unless at some moment the back
wheel lies on the straight line, in which case the back wheel also travels along the same straight
line.) See figure 10.
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_A

Figure 10. A tractrix: the back wheel track (dark solid curve) when the front wheel trav-
els along a straight line (light solid horizontal line). The ‘flipped’ front track is Euler’s
soliton (light dashed curve).

Lemma 5.1. Let y(t) = (b(¢),f(¢)) € Q be a horizontal lift of the straight line £(t) = (t,0).
Then either b(f) = (t = £, 0) or b(¢) is a tractrix of width (. Explicitly,

b(t) = (t — £ tanh [(t — £0) /(] , € sech [(t — 1) /{]) . 10 € R.
The associated Euler soliton, obtained via the involution P, is
f(r) = 2b(t) — f(t) = (t—2¢ tanh [(t — 19)/{] . 2¢ sech [(t — 19)/{]) .

Proof. From lemma 4.1, the horizontality condition on ~ is 0 + sin # = 0. The general
solution of this ODE is 6(1) = —2cot™! ("), provided that —7 < 6(0) < 0, from which
the statement follows. (To get the solutions with 0 < #(0) < 7 note that the equation is invariant
under § — —6.) [l

Remark 5.2. Note that the tractrix b(¢) of lemma 5.1 tends to the earlier solutions (¢ =& £, 0),
as the ‘phase parameter’ 7y — £o00.

We continue with the proof of the ‘if* part of theorem 1.2. Let ¢ : R — R? be an arc length
parametrization of a straight line and v : R — Q any horizontal lift of c. As discussed immedi-
ately above, any horizontal lift of a metric line must be a metric line, hence + is a metric line in
Q. The back track of such a lift is either a straight line or a tractrix of width /. In case the back
track is a tractrix apply ® to - and project back to arrive at ¢ = 7y o ® o . By the last lemma
any such ¢ is an Euler soliton of width 2¢. Since isometries map metric lines to metric lines the
curve v = ® oy is a metric line and so the Euler soliton ¢ is the projection of a metric line.

Note that we can construct any Euler soliton of width 2/ in this way.

The rest of the proof of theorem 1.2 (the ‘only if” part). We have just proven that all infinite
geodesics in Q whose front tracks are straight lines or Euler solitons of width 2¢ are metric lines.
To prove that there are no other metric lines in Q we invoke theorem 1.1. According to this
theorem it suffices to eliminate all the non-inflectional elasticae, other then the Euler soliton,
as front tracks of metric lines in Q. Our proof follows the idea suggested by figure 3. Given
any non-inflectional elasticae f(¢), other then the Euler soliton, where 7 is arc-length, we can
rigidly rotate it so that its directrix is horizontal, that is, f(r) = (x(7), y(¢)), where y(¢) is periodic
of some period T > 0 and x(¢t + T) = x(#) + L for some L > 0. By translations in x, y and t we
can further assume that f(0) = (0, 0) is a vertex of maximum curvature, so that x(0) = y(0) = 0
and 0(0) = 7/2. (There are explicit expressions for x(¢) and y(¢) in terms of elliptic functions
but we will not need these.)

Thus, after one period we have f(T') = (L, 0). Because ¢ is arc-length, the length of the
elastica segment between f(0) and f(7") is 7. But a straight horizontal line segment is the shortest
curve connecting f(0) to f(7") and its length is L, so we must have that L < T.

After N periods the length of the elastica segment between f(0) and f(NT') is NT. As shown
in figure 11, we can find a shorter bike path between ~(0) and v(NT) for N large enough, as
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Figure 11. A shortcut.

follows: ride along a quarter circle of radius ¢ clockwise without moving the back wheel; then
ride along a straight line eastwards a distance of NL, then a quarter turn counterclockwise. The
total length of this path is 7¢ + NL. For N > ¢ /(T — L) this is shorter that NT.

Remark 5.3. Assuming theorem 1.1, theorem 1.2 follows from the results described in [27]
where the sub-Riemannian geodesics for a sub-Riemannian metric on SE, isometric to our
metric on Q were studied and characterized as solutions (¢) to a family of pendulum equations.
Back in our problem, that angle @ is the angle the bike frame makes with the x-axis. In [27] it
was proved that a geodesic minimizes for all time if and only if 6(f) = const or () is a non-
periodic homoclinic solution of the pendulum problem. These conditions mean that the front
track of the bike moves along a straight line or is an Euler soliton.

6. Loose ends and scattered wheels

6.1. Bicycling correspondence

In the first part the proof of theorem 1.2 (the ‘if’ part) we build the Euler soliton out of a
Euclidean line by using the tractrix back-wheel curve as an intermediary step. In the language
of [8], the line and the Euler soliton are in ‘bicycle correspondence’ with each other, the trac-
trix mediating the correspondence. Take any sufficiently smooth front wheel curve f(7). Choose
any one of its horizontal lifts () = (b(¢), f(¢)). There are a circle’s worth of such lifts, corre-
sponding to an initial choice of point b(#y) on the circle of radius ¢ about f(¢y). Apply the ‘flip’
isometry ¢ of lemma 3.2 to ~y. Project ® o y back to the plane to arrive at the new front wheel
curve f'(t) = 2b(t) — f(?), which shares its back wheel track b(¢) with (¢). Then the two front
wheel curves f(¢) and f(7) are said to be in bicycle correspondence. There are thus a circle’s
worth of bicycle correspondents to f(¢), corresponding to the circle’s worth of choices for b(f).

Question. Is a bicycle correspondent to a projected geodesic always a projected geodesic?

No. The circle of radius ¢ is the projection of a geodesic corresponding to a back track fixed
at this circle’s centre. Most bicycle correspondents of the circle are not elastica and hence not
projections of sub-Riemannian geodesics. It is interesting to note that these correspondents to
the circle are, instead, pressurized elasticae which means their curvature « satisfies the ODE
K+ %f@ + Ar = C with a nonzero constant C. See figure 12.

Question. Is every horizontal lift of a projected geodesic a geodesic?
No. We just saw this above with the case of the circle. Alternatively, see claim 3 of section 4.

6.2. Not of bundle type

For the most familiar sub-Riemannian submersions M — B the answer to the preceding ques-
tion is yes: every horizontal lift of every projected geodesic is a geodesic. Examples include the
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Figure 12. Pressurized elasticae (dashed curves), in bicycle correspondence with a
circle, sharing a common back track (light curve).

Heisenberg group, Carnot groups G with B = G/[G, G], the Hopf fibration examples $> — §*
and the various principal bundle examples in [23]. What makes these geometries different from
bicycling geometry, group-theoretically speaking, is that for them the group of sub-Riemannian
isometries acts transitively on each fibre.

Definition 6.1. A sub-Riemannian manifold M is of bundle type if it admits a sub-
Riemannian submersion 7 : M — B and a Lie subgroup H C Isom(M) such that the fibres of
7 are orbits of H.

If M — Bis of bundle type then, necessarily, every horizontal lift of a projected geodesic is a
geodesic. So, our bicycling sub-Riemannian geometry with its front track projection 7y : Q —
R? cannot be of bundle type.

The front track submersion is a principal S'-fibration, so that its fibres are the orbits of a free
S'-action on 0, but this action cannot be an action by isometries, as we have just seen. To see
this fact directly, fix a base point q, € Q. Identify SE, ~ Q, q, — gq,. Then the induced sub-
Riemannian structure on SE; is invariant under left-translations by SE,, while 7, : SE, — R?
is the quotient by right-translations by S' C SE,, the rotations about mr(qy) € R2.

Remark 6.2. In fact, this S'-action is not even by contact symmetries: right translation R,
by an element g € S' defines a map of SE, which does not preserve the contact distribution D.
This failure is easily seen by observing that R, acts on a bike path in Q (a D-horizontal curve)
by rotating the bike frame along the path by a fixed angle, without changing the front track,
producing ‘skidding’ of the back wheel.

6.3. Other models for bicycling geometry

The bicycling configuration space Q can be identified, SE,-equivariantly, with STR?, the space
of unit tangent vectors to the plane. Write elements of STR? as pairs (b, v) where b € R? and
v € R? is a unit vector attached at the point b. Identify b with the location of the back wheel
and v with the direction of the frame. Then the isomorphism STR? — Q is

(b,v) — (b,f), with f=b+ /v. (12)

The induced contact distribution on STRZ, also denoted as D, can be described by the con-
dition that its smooth integral curves (b(¢), v(¢)) satisfy b(f) € Rv(z). write b = (x;, y,) and
v = (cosf, sinf), to define global coordinates (xp,y,, ) on STR2. In these coordinates a
smooth curve (x(1), y,(1), 6(¢)) is horizontal if and only if there is a smooth scalar function
A(t) such that X, = A cos 6,y, = A sin 6. Eliminating )\, the contact distribution D is given by
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the vanishing of the contact form

(sin #)dx, — (cos B)dy,. (13)
The vector fields
S = ‘straightahead” = (cos 0)0,, + (sin 6)0,, (14)
and
T = “‘turn” = (15)

clearly frame D°. An integral curve of S corresponds to the bicycle moving along a straight line
passing through the bike frame. An integral curve of T corresponds to a circus trick: the back
wheel is stationary, marking the centre of a circle about which the front wheel traces a circle of
radius ¢. To do this trick, the front wheel must be turned at 90 degrees to the frame. The front
wheel tracks of this line and a circle are orthogonal. By basic geometric considerations we see
that

(S,8) =1, (S, T)=0, (T,T)=~/¢>

A second proof of len~1ma 3.2. Consider the map (?(x;,, Vb 0) = (X, yp, 0 + m) on STR?. One
computes ,S = —S, &, T = T which shows that ® is a sub-Riemannian isometry. In terms of
our (b, v) representation of STR? we have

d((b, v)) = (b, —v). (16)

Rewritten, using the isomorphism (12), the map (16) becomes the map ® : Q — Q of the
lemma.

6.4. Bicycle parallel transport and hyperbolic geometry

Associated to a sub-Riemannian submersion 7 : M — B and a path ¢ : I — B we have a par-
allel transport map. If the initial and final endpoints of ¢ are f;, and f| then this is a map
' (fo) = 7' ()
Question. Is parallel transport for bicycling an isometry between fibres?

No. One way to see this is via the following theorem.

Theorem 6.3 (Foote [14]).  The parallel transport map for bicycling is a linear frac-
tional transformation of S'. Every linear fractional transformation can be obtained by parallel
transport along some closed curve.

There is no metric on the circle for which the group PSL,(RR) of linear fractional transforma-
tions acts by isometries, so Foote’s theorem implies the ‘no’ answer above. Again, if M were
of bundle type then the answer to the above question would be yes: parallel transport would
be an H-map and hence an isometry.

Let us say a few words about what parallel transport involves for bicycling. Fix a front path
¢ joining two front wheel locations fy, f; in the plane. The fibre W;I(fo) is the circle of radius
¢ centred at fj). The points of this circle represent all ways of placing the back wheel before

6 The notation 9y stands here for a different vector field from the one in equation (6), because we used there different
coordinates, (x,y, 0).
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bicycling the front wheel along the path ¢. Choosing one such placementby € 7, '(fy) leads to
aunique horizontal lift v of ¢ starting at y(0) = (b, fp). Here we assume that c¢ is parametrized
by the unit interval [0, 1]. Writing v(f) = (b(?), c(¢)), we have that the parallel transport of by
along ¢ is b(1), which is an element in the circle of radius £ about f;. So parallel transport, or
holonomy, along ¢ is a diffeomorphism between two circles, one centreed at fy, the other at
f). Use translation and scaling to identify each circle with the standard unit circle so that this
parallel transport becomes a map of the standard unit circle to itself. Foote’s theorem above
might be called the ‘first theorem’ of ‘bicycling mathematics’. See [8].

Although the group PSL,(R) does not act isometrically on the circle, it does act isometri-
cally on the hyperbolic plane. In fact PSL,(R) equals the group of rigid motions of that plane.
The configuration space for rolling a hyperbolic plane on the Euclidean plane can be identified
with M :=PSL,(R) x R? and inherits, in a canonical way, a rank 2 sub-Riemannian geome-
try such that the projection onto R? is a sub-Riemannian submersion of bundle type. Articles
[17, 18] prove that its geodesics project to planar elasticae, both inflectional and
non-inflectional.

6.5. A heuristic proof of theorem 1.1

Our bicycle configuration space Q can be identified with the circle bundle associated to
M — R?, where the structure group PSL,(RR) acts on the circle by fractional linear transforma-
tions, as per Foote’s theorem. Associated with any plane curve ¢ : I — R? we have its hyper-
bolic rolling parallel transport, an element k = k(c) € PSL,(R) acting by left multiplication on
the fibres. The projection to R? of a sub-Riemannian geodesic on M solves the following iso-
holonomic problem (see [23, 24], chapter 11, especially theorem 11.8): among all plane curves
¢ connecting given points fj to f; and having a fixed hyperbolic transport k = k(c) € PSL,(R),
find the shortest. Now imagine fixing the bicycle placement as well as the front wheel locations,
which is to say, let us fix back wheel locations by, by, writing them as b; = f; 4 ¢v;. Recall that
k € PSL,(R) acts on the unit circle. Now, it may or may not be true that k(vy) = v;. If not, let
k vary. Consider all k € PSLy(R) satisfying k(vo) = v;. For any such k form the corresponding
hyperbolic rolling geodesic ¢ for which k(c) = k. Now, minimize the lengths of all such ¢’s
over all of the k’s satisfying the condition that they take vy to vi. The curve achieving this
minimizer will be the front wheel projection of a bike geodesic minimizing the length between
(bo, fo) and (by, f;), and will also be itself a particular type of hyperbolic rolling geodesic.
Since we know by [17, 18] that hyperbolic rolling geodesics project to elasticae, we are
done!

What makes this proof heuristic? For one thing, the set of k’s over which we are minimizing
is a non-compact set, so we have no guarantee that the minimum exists. For another thing, the
proof does not single out the non-inflectional elasticae from all elasticae.

6.6. Open questions

The bicycle correspondents of a curve ¢ are the result of the compositions ¢ — mro ® o hc,
where hc indicates any of the circle’s worth of horizontal lifts of the front track ¢ and
where @ is the flipping isometry of lemma 3.2. There are a number of hints in [8] that
the ‘transformation’ of forming bicycling correspondents shares much in common with the
Backlund transformations arising in the theory of integrable PDE.

What is the family of curves that we get by forming the bicycle correspondents of elastica?
Repeat and form all the bicycle correspondents of all the curves in this new family. What
do we get now? Let us call this set the ‘2nd generation’ of correspondents to elastica. Keep
going. Does the procedure eventually close up, or, do we get new curves at each generation?
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Do the curves at the nth generation satisfy some ‘nice’ ODE? Are they projections of sub-
Riemannian geodesics on some sub-Riemannian geometry constructed iteratively from Q or
PSL,(R) x R??

We could also ride our bicycle on a sphere or hyperbolic plane. This change of bicycling
arena corresponds to investigating a left-invariant sub-Riemannian structure on either SO3; or
PSL,(R), these being the unit tangent bundles and also the group of rigid motions of the sphere
or hyperbolic plane, respectively. (When bicycling on the sphere of radius R one may need
to insist that the frame’s length is not equal to an integer multiple of R7/2 to avoid various
pathologies. See [6] for interesting relations that might arise between front and back wheel
curves when the spherical frame length is R7/2.) How would our two main theorems change?
Are the front wheel projections of sub-Riemannian geodesics still elastica, meaning curves
whose geodesic curvatures satisfy equation (1)? We guess so, but have not checked and are open
to surprises. Would bicycling on these non-Euclidean geometries add to our understanding of
how (or if) these different occurrences of elastica in sub-Riemannian geometry are related?
Perhaps.
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Appendix A. Proof of theorem 3.3 on isometries

The group SE, of orientation preserving isometries of the euclidean plane acts freely and tran-
sitively by sub-Riemannian isometries on the bicycling configuration space Q. Fixing a point
qo € O, weidentify SE, ~ O, g — g - qq. This identification is SE,-equivariant, hence induces
a left-invariant sub-Riemannian structure on SE,, given by its value at the identity e € SE;, a
two-dimensional subspace D, C se;, equipped with an inner product.

To determine the isometry group Isom(SE,) of this sub-Riemannian structure we use two
ingredients: (1) Cartan’s equivalence method, applied to the local classification of three-
dimensional sub-Riemannian manifolds of contact type; (2) a calculation of Aut(se,, D,), the
group of automorphism of the Lie algebra of SE, preserving the contact plane at ¢ € SE, and
the inner product.

(1) Let M be a three-dimensional sub-Riemannian manifold of contact type (thatis, D C TM
is bracket generating). Similar to the Riemannian case, one can use the Cartan method of equiv-
alence to construct a canonical connection on 7M and associated curvature tensor, whose van-
ishing is equivalent to M being ‘flat’, that is, locally isometric to the maximally symmetric case,
the sub-Riemannian structure induced on S* from §* via the Hopf fibration $* — §?, admitting
a four-dimensional isometry group (the standard action of U, on C? D $%). In the non-flat case,
such as ours, the equivalence method shows that the isometry group, even the local one, is at
most three-dimensional. It follows that the space Isom(M) of sub-Riemannian Killing fields
(vector fields whose flow acts by sub-Riemannian isometries) is at most three-dimensional. A
good reference for this circle of ideas is [20].
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Now let G be a three-dimensional connected Lie group with a left-invariant non-flat sub-
Riemannian structure of contact type. Let g = 7, G be its Lie algebra, equipped with the Lie
bracket coming from the commutator of left-invariant vector fields. Let L(G) C Isom(G) be
the (isomorphic) image of the action of G on itself by left translations. Then, by part (1) above,
dim[Isom(G)] = 3. Let R(G) be the right-invariant vector fields on G. They generate left trans-
lations, hence R(G) C isom(G). But dim[isom(G)] < 3, so R(G) = isom(G). Let Isom,.(G) be
the stabilizer of e in Isom(G), a discrete subgroup.

Lemma A.1. Isom(G) = L(G) x Isom.(G). That is, L(G) is a normal subgroup of Isom(G),
L(G) NTsom,(G) = {e} and Isom(G) = L(G)Isom,(G).

Proof. By our assumptions on G and dimensionality, L(G) is the identity component of

Isom(G) hence is a normal subgroup. If L, € L(G) N Isom,(G) thene = Ly(e) = ge = g, hence

g =e. Let f € Isom(G) and g = f(e). Then L, o f € Isom,(G), hence f € L(G)Isom,.(G).
O

Lemma A.2. The map Isom.(G) — GL(g), f+ df,, is (a) injective, (b) its image is con-
tained in Aut(g, D,), the group of Lie algebra automorphisms of g preserving D, and its inner
product.

Proof.

(a) Anisometry of sub-Riemannian connected manifolds of contact type is determined by its
derivative at a single point (one can deduce it from the existence of a canonical Riemannian
metric on such a manifold). Hence f +— df, is injective.

(b) An isometry of a sub-Riemannian manifold M acts on its algebra of Killing vector fields
isom(M) as an automorphism of Lie algebras. In our case, isom(G) = R(G) and the eval-
uation map R(G) — g is a Lie algebra anti-isomorphism, hence d f, preserves the negative
of the Lie bracket on g, and thus the Lie bracket itself, that is, df, € Aut(g). Since fis a
sub-Riemannian isometry and fixes e, it leaves D, invariant, acting on it by isometries. [

(2) After all these preliminaries, it remains to make some calculations in our case of
G = SE,, equipped with a left-invariant sub-Riemannian structure induced by its action on
the bicycling configuration space Q.

First, to show that such a sub-Riemannian structure is non-flat, we note that it is of contact
type (see lemma 4.1) and that an even stronger statement is known to hold; namely, that the CR
structure associated to such a sub-Riemannian structure on SE, (they are all equivalent) is not
flat (the CR structure associated to a sub-Riemannian structure is obtained by keeping only the
conformal structure on D, ‘forgetting scale’). See for example the calculation in §7 of [9]. This
statement was already known to Cartan, who classified all homogeneous three-dimensional
CR structures [12]. We conclude that the group of sub-Riemannian isometries Isom(SE;) is
three-dimensional, where the identity component is generated by left translations of SE, on
itself. Alternatively, one can use the last section of [15] to arrive at the same conclusion.

Next, we fix a basis of se,, given by the following Killing vector fields on R?,

8xa ay’ a() - xay - yax,
satisfying
[aXaay] - Oa [aﬂ,ax] = _ay’ [aﬂ, ay] = 8){'

Next fix q, = (bo, fo) € Q, where by = (—1,0),f, = (0,0) (we assume ¢ = 1, the general
case follows easily from this case by a rescaling argument). In the coordinates (x,y, #) of
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section 4.2, qq is given by xo =y, = 0y = 0. The actions of 0y, 0y, 0y at by are Oy, 0y, —0,
respectively, and the no-skid condition at qj, is BH@X. It follows that a0y + b0y + ¢dy € D, C
se, if and only if b = ¢. Thus D, is span by X := 0y, X» := 0, + 0y. They act at f, = (0,0) by
Ok, Oy, respectively, hence they form an orthonormal basis for D,. Let X3 = [X;, X»] = 0.

Lemma A.3. Aut(ses, D,) = {id, 1,02, 01902} = {id, o1} - {id, 2} ~ 7y x Zs, where
¥y, p, are given in the basis X, X,, X3 by diag (1, —1, —1), diag (—1, —1, 1), respectively.

Proof. One verifies easily that ¢, p, € Aut(sey, D,) and that they generate a group
{id, o1, 02, pr2} = {id, o1} - {id, p2} ~ Zy X Z,. Tt remains to show that any element
€ Aut(sey, D,) is in this group. The X X3-plane (the linear span of X, X3) is the only two-
dimensional abelian ideal in se,, hence is p-invariant. It follows that the X;-axis, the inter-
section of the X;X3-plane and D,, is @-invariant. Being an isometry of D,, ¢(X;) = €1X},
©(X2) = e2Xp, with g1,e; € {1,—1}. Being an automorphism, ¢©(X3) = ¢([X1,X2]) =
[p(X1), p(X2)] = £162X;. 0

Next, we realize Aut(se;, D, ) by elements of Isom,(SE;). With each element f € Isom(Q) is
associated an elementf € Isom(SE,) via the identification SE, ~ Q, g — gq,. For g € SE, C
Isom(Q), g = L,. Let p € E, be reflection about the x axis. Using complex notation, p(z) = Z.
Let g, € SEz, z— uz 4w, where u,w € C and [u| = 1. Then pguz, = guz,p- Hence /-

Suw = Quw- Similarly, P - Suw = &—uw-2u-

Lemma A.4. ¢, =dj,, ¢, = df., where p is reflection about the x axis, f = p'®, and p/
is the reflexion about the line x = —1.

Proof. This is a routine verification. Ist verify that both p, f leave q, fixed, so ﬁ,f S
Isom,(SE5). Next check that dp, : 0y +— Oy, Oy — —0y, Op — —0y. It follows that dp, = ;.
Next check that df, : 0, — —0x, Oy — —0,, Oy — —20, — Op. It follows thatdf, = ¢,. O

Corollary A.5. LetT' = {id, p, ®, p®} C Isom(Q), where p € E,\SE; (a reflection about a
line). ThenT = {id, p} - {id, ®} ~ Z, x Z; and Tsom(Q) = SE; x T

Proof. Clearly, SE; N T = {id}, so it remains to show that SE, - T' = Isom(Q). We can
assume, by conjugating by an element of SE, that maps the fixed line of p to the x-axis, that
p is the reflection about the x-axis (the same p as in the last lemma). By the previous lem-
mas, Isom(Q) = SE, - Iy, where I'y = Isomg,(Q) = {id, p, p'®, pp'®}. Now p® = p'® and
® = pp'® (mod SE,), hence SE, - I' = SE, - 'y = Isom(Q). U
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